Solution Manifolds for Systems of Differentialequationsjohn
نویسنده
چکیده
This paper deenes a solution manifold and a stable submanifold for a system of diierential equations. Although we eventually work in the smooth topos, the rst two sections do not mention topos theory and should be of interest to non-topos theorists. The paper characterizes solutions in terms of barriers to growth and deenes solutions in what are called lter rings (characterized as C 1-reduced rings in a paper of Moerdijk and Reyes). We examine standardization, stabilization, perturbation, change of variables, non-standard solutions, strange attractors and cycles at innnity.
منابع مشابه
Evaluation of Thermal Barrier Coating in Low Cycle Fatigue Life for Exhaust Manifold
This paper presents low cycle fatigue (LCF) life prediction of a coated and uncoated exhaust manifolds. First Solidworks software was used to model the exhaust manifolds. A thermal barrier coating system was applied on the tubes c of the exhaust manifolds, consists of two-layer systems: a ceramic top coat (TC), made of yttria stabilized zirconia (YSZ), ZrO2-8%Y2O3 and also a metallic bond coat ...
متن کاملGEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW
The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...
متن کاملRicci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملOn $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000